Quantum number
A detail derivation of schrodinger equation under spherical coordinate, which can obtain quantum number.
According to Schrodinger equation
\[\left(-\frac{{\hslash }^2}{2m}{\nabla }^2\right)\psi \left(r,t\right)=E\psi \left(r,t\right)\]
If we consider ${\mathrm{\nabla }}^{\mathrm{2}}$ under spherical coordinate, we have
\[\left(-\frac{{\hslash }^2}{2m}\left(\frac{1}{r^2}\frac{\partial }{\partial r\ }\left(r^2\frac{\partial }{\partial r}\right)+\frac{1}{r^2{{sin}^2 \theta \ }}\left(sin\theta \frac{\partial \left(sin\theta \frac{\partial }{\partial \theta }\right)}{\partial \theta }+\frac{{\partial }^2}{\partial {\phi }^2}\right)\right)+V\left(r,t\right)\ \right)\psi \left(r,t\right)=E\psi \left(r,t\right)\]
Divided by $\mathrm{-}\frac{\mathrm{2}{\mathrm{mr}}^{\mathrm{2}}}{{\hslash }^2}$
\[\left(\left(\frac{\partial \left(r^2\frac{\partial }{\partial r}\right)}{\partial r\ }-\frac{1}{{{\mathrm{sin}}^2 \theta \ }}\left(sin\theta \frac{\partial \left(sin\theta \frac{\partial }{\partial \theta }\right)}{\partial \theta }+\frac{{\partial }^2}{\partial {\phi }^2}\right)\right)-\frac{2mr^2}{{\hslash }^2}V\left(r,t\right)\ \right)\psi \left(r,t\right)=-\frac{2mr^2}{{\hslash }^2}E\psi \left(r,t\right)\]
Using separation to solve the PDE}
\[\psi \left(r,t\right)=R\left(r\right)\mathit{\Theta}\left(\theta \right)\mathit{\Phi}\left(\phi \right)=R\left(r\right)Y\ \ \ ,\ Y\left(\theta ,\phi \right)=\mathit{\Theta}\left(\theta \right)\mathit{\Phi}\left(\phi \right)\]
Divided by }$R\left(r\right)Y$
\[\frac{1}{R}\frac{\partial }{\partial r\ }\left(r^2\frac{\partial }{\partial r}\right)-\frac{2mr^2}{{\hslash }^2}\left(V-E\right)-\frac{1}{Ysin^2\theta }\left(sin\theta \frac{\partial }{\partial \theta }\left(sin\theta \frac{\partial }{\partial \theta }\right)+\frac{{\partial }^2}{\partial {\phi }^2}\right)=0\]
\[\left\{ \begin{array}{c}
\frac{1}{R}\frac{\partial }{\partial r\ }\left(r^2\frac{\partial }{\partial r}\right)-\frac{2mr^2}{{\hslash }^2}\left(V-E\right)=l\left(l+1\right) \\
\frac{1}{Ysin^2\theta }\left(sin\theta \frac{\partial }{\partial \theta }\left(sin\theta \frac{\partial }{\partial \theta }\right)+\frac{{\partial }^2}{\partial {\phi }^2}\right)=-l\left(l+1\right) \end{array}
\right.\]
according to Schrodinger equation and separable variable method, we can derive following partial differential equation:}
\[sin\theta \frac{\partial }{\partial \theta }\ \left(sin\theta \frac{\partial Y}{\partial \theta }\right)+\frac{{\partial }^2Y}{\partial {\phi }^2}=-l\left(l+1\right){{sin}^2 \theta \ }Y\]
with variable $Y\ $are function of $\mathrm{\Theta }$ and $\mathit{\Phi}$
\[Y\left(\theta ,\phi \right)=\mathit{\Theta}\left(\theta \right)\mathit{\Phi}\left(\phi \right)\]
Plugging this, and divide by $\mathrm{\Theta }$ and $\mathit{\Phi}$
\[sin\theta \frac{\partial }{\partial \theta }\ \left(sin\theta \frac{\partial }{\partial \theta }(\mathit{\Theta}\left(\theta \right)\mathit{\Phi}\left(\phi \right))\right)+\frac{{\partial }^2}{\partial {\phi }^2}\mathit{\Theta}\left(\theta \right)\mathit{\Phi}\left(\phi \right)=-l\left(l+1\right){{sin}^2 \theta \ }\mathit{\Theta}\left(\theta \right)\mathit{\Phi}\left(\phi \right)\]
\[\mathit{\Phi}\left(\phi \right)sin\theta \frac{\partial }{\partial \theta }\ \left(sin\theta \frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial \theta }\right)+\mathit{\Theta}\left(\theta \right)\frac{{\partial }^2\mathit{\Phi}\left(\phi \right)}{\partial {\phi }^2}=-l\left(l+1\right){{sin}^2 \theta \ }\mathit{\Theta}\left(\theta \right)\mathit{\Phi}\left(\phi \right)\]
\[\frac{1}{\mathit{\Theta}\left(\theta \right)}sin\theta \frac{\partial }{\partial \theta }\ \left(sin\theta \frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial \theta }\right)+\frac{1}{\mathit{\Phi}\left(\phi \right)}\frac{{\partial }^2\mathit{\Phi}\left(\phi \right)}{\partial {\phi }^2}=-l\left(l+1\right){{sin}^2 \theta \ }\]
Consider the parts of $\mathit{\Phi}$
We define a quantum number $m_l$ as following
\[{-m}^2_l=\frac{1}{\mathit{\Phi}\left(\phi \right)}\frac{{\partial }^2\mathit{\Phi}\left(\phi \right)}{\partial {\phi }^2}\]
And the solution of differentiate equation related to }$\mathrm{\phi }$ are
\[\mathit{\Phi}\left(\phi \right)=A\times e^{-m_l\phi }\]
Plugging in and we get
\[\frac{1}{\mathit{\Theta}\left(\theta \right)}sin\theta \frac{\partial }{\partial \theta }\ \left(sin\theta \frac{\partial \mathit{\Theta}\left(\theta \right)}{\partial \theta }\right){-m}^2_l=-l\left(l+1\right){{sin}^2 \theta \ }\]
After some algebra
\[sin\theta \frac{\partial }{\partial \theta }\ \left(sin\theta \frac{\partial \mathit{\Theta}\left(\theta \right)}{\partial \theta }\right)+\mathit{\Theta}\left(\theta \right)\left({l\left(l+1\right){{sin}^2 \theta \ }-m}^2_l\right)=0\]
Using situational variable
\[cos\theta =x\]
we get following usable relation
\[sin\theta =\frac{dx}{d\theta }=\sqrt{1-x^2}\]
plugging those relation, we get
\[\sqrt{1-x^2}\frac{\partial }{\partial \theta }\ \left(\sqrt{1-x^2}\frac{\partial \mathit{\Theta}\left(\theta \right)}{\partial \theta }\right)+\mathit{\Theta}\left(\theta \right)\left({l\left(l+1\right)(1-x^2)-m}^2_l\right)=0\]
We can change the differentiate variable theta to x by chain rule
\[\frac{\partial }{\partial \theta }\ \left(\sqrt{1-x^2}\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial \theta }\right)=\frac{\partial }{\partial \theta }\ \left(L\right)=\frac{dL}{dx}\frac{dx}{d\theta }\]
And
\[\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial \theta }=\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial x}\frac{dx}{d\theta }\]
Therefore
\[\sqrt{1-x^2}\frac{\partial \left(\sqrt{1-x^2}\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial x}\frac{dx}{d\theta }\right)}{\partial x}\ \frac{dx}{d\theta }+\mathit{\Theta}\left(\theta \right)\left({l\left(l+1\right)\left(1-x^2\right)-m}^2_l\right)=0\]
Substitute$\frac{dx}{d\theta }$ with$\sqrt{1-x^2}$
\[\sqrt{1-x^2}\frac{\partial \left(\sqrt{1-x^2}\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial x}\sqrt{1-x^2}\right)}{\partial x}\ \sqrt{1-x^2}+\mathit{\Theta}\left(\theta \right)\left({l\left(l+1\right)(1-x^2)-m}^2_l\right)=0\]
Merge the $\sqrt{1-x^2}$
\[\left(1-x^2\right)\frac{\partial \left(\left(1-x^2\right)\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial x}\right)}{\partial x}\ +\mathit{\Theta}\left(\theta \right)\left({l\left(l+1\right)(1-x^2)-m}^2_l\right)=0\]
Using the chain rule to expansion the differential item}
\[{\left(1-x^2\right)}^2\frac{{\partial }^2\mathit{\Theta}\left(\theta \right)}{\partial x^2}+\left(1-x^2\right)\frac{\partial \left(1-x^2\right)}{\partial x}\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial x}\ +\mathit{\Theta}\left(\theta \right)\left({l\left(l+1\right)(1-x^2)-m}^2_l\right)=0\]
After some algebra
\[{\left(1-x^2\right)}^2\frac{{\partial }^2\mathit{\Theta}\left(\theta \right)}{\partial x^2}+\left(1-x^2\right)(-2x)\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial x}\ +\mathit{\Theta}\left(\theta \right)\left({l\left(l+1\right)(1-x^2)-m}^2_l\right)=0\]
Dividing $\left(1-x^2\right)$
\[\left(1-x^2\right)\frac{{\partial }^2\mathit{\Theta}\left(\theta \right)}{\partial x^2}-2x\frac{\partial \ \mathit{\Theta}\left(\theta \right)}{\partial x}\ +\mathit{\Theta}\left(\theta \right)\left(l\left(l+1\right)-\frac{m^2_l}{1-x^2}\right)=0\]
Which is known as Legendre equation and the solution for ml=0 are
\[P_l\left(x\right)=\frac{1}{2^ll!}{\left(\frac{d}{dx}\right)}^l{\left(x^2-1\right)}^l\]
And for more general cases, while $m_l\neq 0,$ we get associated legendre function
\[P^{m_l}_l\left(x\right)={{\left(-1\right)}^{m_l}\left(1-x^2\right)}^{\frac{\left|m_l\right|}{2}}\ {\left(\frac{d}{dx}\right)}^{\left|m_l\right|}P_l\left(x\right)\]
With associated legendre function condition of
\[0\le m\le l\]
An example of :
\[P^0_2=\frac{1}{2}(3{{cos}^2 \theta \ }-1)\]